

LaTeXBuddy

The only LaTeX checking tool you’ll ever need.

LaTeXBuddy is the checking tool for LaTeX, which combines the power of various
other tools in one easy-to-use command-line tool with clear HTML output.
Aspell, ChkTeX, LanguageTool: you name it! LaTeXBuddy is modular and
Python-based, so that implementing new functionality becomes a breeze!

Important

LaTeXBuddy is a work in progress. We are working on fixing bugs and cleaning up.
Using LaTeXBuddy in its current state may come with a lot of inconveniences.
Upon reaching the Beta status, we will open-source this project. For now, it technically
remains copyrighted, yet you’re free to fork it and provide your edits and
improvements to the code base.

Copyright © 2022–2023 LaTeXBuddy authors.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled
“GNU Free Documentation License”.

User’s guide

Tutorial

	Install
	Install from GitLab Package Registry

	Build from source
	With Docker

How do I...

	...develop my own module?
	Create a Python file for your module

	Working with TexFile

	Working with Problem

	Further Information

	...use the API?
	Using the ConfigLoader

	Using the included utilities

Reference

	Command-line interface
	Main executable

	Whitelist operations

	API Reference
	Main instance

	Configuration

	TeX file

	Modules

	Problems

	Output

	Preprocessing

	Whitelist

	Utilities

	Built-in modules
	aspell

	BibTeX

	ChkTeX

	Diction

	LanguageTool

	Log filter

	Own checkers

	Proselint

	Yalafi

	Server API Reference
	FlaskConfigLoader

Developer’s guide

Developer's guide

	Environment setup
	OS

	Code Editor

	Git

	Python

	Tox

	pre-commit

	Authoring a change
	Log your Changes

	Releasing a new version
	Requirements for a release

	Releasing

Changelog

All notable changes to LaTeXBuddy will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

Unreleased

Warning

These changes have not been part of a release yet.

No significant changes.

0.5.0 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/tree/v0.5.0] - 2023-04-02

🔥 BREAKING CHANGES

	#112 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/issues/112]: CLI got revamped and simplified

	removed option --flask ⇒ use executable latexbuddy-server instead

	removed options --wl_add_keys and --wl_from_wordlist ⇒ use executable latexbuddy-whitelist instead

	whitelist operations got moved to the new whitelist module

	removed the big mutually exclusive group, which should affect usage

	extend_path() call was removed, making LaTeXBuddy not a namespace any more

Changed

	#105 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/issues/105]: LaTeXBuddy is now open-source under the terms of GPL-3.0-or-later

	#110 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/issues/110]: some calls to os.path were replaced with pathlib.Path

	Replaced usage of MD5 with SHA-1 and marked this usage as insecure. This should
allow execution of LaTeXBuddy in protected environments and on FIPS builds of
Python.

	Requests to the LanguageTool API now have a timeout of 60 seconds.

Fixed

	fix a couple documentation issues, like missing modules and broken links

Behind-the-scenes

	#125 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/issues/125]: Poetry was ditched in favour of a rather vanilla setuptools+tox setup

	#126 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/issues/126]: Enabled test results output in GitLab CI.

	#127 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/issues/127]: Automated release publishing. Now, we can publish a new Git tag, and this will
automatically create a GitLab release

	Enabled code coverage calculation on each test.

	Improved CI

	smoke test is now being run in parallel on multiple Python versions

	improved caching of pip between jobs and branches

	Not adding changelog entries to a merge request will now raise a warning in CI.

	Towncrier is now used to generate the changelog

0.4.2 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/compare/v0.4.1...v0.4.2] - 25 Dec 2022 :christmas_tree:

Fixed

	fixed regression introduced in ef2e4e2f9ff2ac3e1a9772cfec0985b6b4e20d9c
where the app would crash because of a weird typing error (!180)

Changed

	TexFile will not try reading a file if it’s empty, but return an empty string (#22, !177)

	Logging was simplified (!181)

	replaced custom get_app_dir() with a more robust platformdirs (!182)

0.4.1 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/compare/v0.4.0...v0.4.1] - 09 Dec 2022

Fixed

	the latest version got published with the wrong tag (0.3.0)

0.4.0 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/compare/v0.3.0...v0.4.0] - 09 Dec 2022

BREAKING CHANGES

	minimal Python version set to 3.7 (!168)

Added

	line numbers (!135)

	new test cases for multiple occurrences of own_checkers problems (!110)

	custom key for YaLafi problems (!109)

	filter for log files (!121)

	new base class for all modules and LatexBuddy (NamedModule) (!108)

	new Loggable base class which provides a properly named logger to any class inheriting from it (!108)

	new module “NewerPublications” that checks for each entry in the BibTeX file if a newer publication exists (!120)

	new module “BibtexDuplicates” that checks the BibTeX file for similar entries (!120)

	debug message for beginning and end of whitelist check in LatexBuddy (!141)

	pytest environment (!142)

	all unit tests as per documentation (!142)

	all integration tests as per documentation (!142)

	default tooltip in html for problems without a custom description (!150)

	new test routines for HTML highlighter (!150)

	flask server as a GUI for checking documents (!154)

Changed

	the problem list and text is now scrollable (!135)

	language selection for aspell now works dynamically and using the config (!105)

	language codes are now standardized to fit different formats (!116)

	methods in ConfigLoader now take an instance or a type-descriptor of type NamedModule instead of taking the name as a string (!108)

	Problem API now takes an instance or a type-descriptor of type NamedModule instead of a string (!108)

	NamedModule is now the base class of Module and MainModule (therefore LatexBuddy) and provides a logger to all these classes by inheriting from Loggable (!108)

	all modules now use the new standards for ConfigLoader, Problem API and logging (!1ß8)

	LatexBuddy is now a singleton and inherits from MainModule, making it an instance of NamedModule as well (!108)

	modified format of config.py: options with key "buddy" are now located in a seperate dictionary (!108)

	languagetool now dynamically retrieves a list of supported languages from the commandline or (local/remote) server instead of comparing with a hardcoded list (!139)

	renamed tool_loader.py to module_loader.py and ToolLoader to ModuleLoader (!141)

	extracted an interface ModuleProvider from ModuleLoader and adjusted LatexBuddy and cli.py accordingly (!141)

	removed LatexBuddy methods change_file and clear_error_list and replaced their occurrences with init (!141)

	reimplemented highlighting algorithm enabling markings for different problems to overlap (!150)

	updated the Docker image to add TeX Live (!157)

	new logo (!173)

Fixed

	regex usage in own_checkers (!110)

	inconsistent naming of some checkers in config, Problem API and classnames (!108)

	shortened slightly lengthy methods in config_loader.py (!140)

	fixed critical bug in the highlighting system with reimplementation (!150)

	fixed bug in output.py which would break the HTML document, if a problem description contained linebreaks (!155)

	fixed tool loader so the modules directory can be anywhere on the file system (!159)

0.3.0 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/compare/v0.2.0...v0.3.0] - 15 Jun 2021

Added

	centralized file for LaTeXBuddy exceptions (!94)

	checker to warn about low resolution in figures (!101)

	checker to detect \ref instead of e.g. \cref (!99)

	language support in whitelist for spelling or grammar errors (!102)

	added option to manually add keys and word lists to the whitelist via command line (!106)

	added Docker file for Docker-based install (!103)

Changed

	moved module execution time measurements from individual modules to the main buddy instance (!93)

	improved logging for tool-methods find_executable and execute_no_errors (!94)

	adapted all modules using tool-methods find_executable and execute_no_errors to the new features (!94)

	changed module execution to utilize multiprocessing (!92)

	changed Problem attribute position to be optional (!96)

	renamed Problem attribute cid to p_type and made it optional (!102)

	whitelist file extension removed (!102)

	number of suggestions in a problem is now capped at 10 (!102)

Fixed

	minor issue in languagetool.py: module didn’t stop execution after java-check failed in find_languagetool_command() (!94)

	import issue with proselint, because proselint.py shared the same name with the imported API (!95)

	usage of old compare_... functions (#45, !97)

	whitelist working again (!102)

	invalid default value of cli flag format resulting in LaTeXBuddy ignoring the config option for format (#56, !104)

0.2.0 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/compare/v0.1.0...v0.2.0] - 08 Jun 2021

Added

	button, to add to whitelist (!87)

	configuration files (!30)

	abstraction around the checked file using TexFile class (!45, !46)

	tool loader (!47)

	ability to select modules to be run (!48)

	CI job for publishing the package to the Registry (!51)

	error highlighting inside HTML output (!52)

	legal and copyright notices (!54)

	Proselint module (!60)

	various on-house modules

	unreferenced figures (!65)

	SiUnitX (!66, !67)

	empty section (!68)

	use of \url (!69)

	better logging (!73)

	clearer, colourful console output

	file log containing more verbose information

	verification options for config entries (!76)

	--version/-v option to the CLI (!83)

	in-file preprocessor for .tex files (!84)

Changed

	BREAKING CHANGE: minimal Python version set to 3.6.8 (!81)

	modules now adhere to the Abstract Module API (!22, !46)

	errors renamed to problems and now use new API (!42, !46)

	all modules that use the config now validate the config entries (!76)

	removed test_module.py (!77)

	improved spacing and sizing of the logo (!82)

	modules now adhere to the Abstract Module API (!22, !46)

	errors renamed to problems and now use new API (!42, !46)

	removed test_module.py (!77)

Fixed

	Aspell positions of problems in source file (!53, !55)

	HTML output not working properly with new APIs (!56)

	ChkTeX working incorrectly with text containing : (!70)

	Minor inconsistency in typing for Problem constructor’s parameters (!75)

	unwanted spaces around problem text in HTML output (!80)

0.1.0 [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/compare/124d0730...v0.1.0] - 18 May 2021

This is the first (pre-)release of LaTeXBuddy.

Added

	basic project files (!1)

	main module functionality (!3)

	results output

	HTML (!2, !25, !29)

	JSON (!3)

	basic interoperability with non-Python checkers (!5, !6, !10)

	modules

	LanguageTool (!3)

	ChkTeX (!4)

	Aspell (!5, !7, !8)

	whitelist (!21)

	tools

	command-line interface (!17)

	various development improvements

	CI jobs for linting (!18) and smoke tests (!33)

	draft of the abstract module API (!22)

	logo (!38)

Licence

This documentation

Copyright © 2021-2022 LaTeXBuddy authors

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Source code

Copyright © 2021-2022 LaTeXBuddy authors

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Copyright notices

LaTeXBuddy uses third-party software; refer to the NOTICE file [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/blob/master/NOTICE] for the complete list.

Install

LaTeXBuddy is a Python package and thus can be installed with pip. However, it
is not published to PyPI, but rather to GitLab Package Registry. This is because
we do not want to publish our unfinished software just yet. You can expect
LaTeXBuddy to become available on PyPI with the release of v1.0.0 Alpha 1.

Install from GitLab Package Registry

To install the package, execute the following command:

pip install latexbuddy --index-url https://gitlab.com/api/v4/projects/28436730/packages/pypi/simple

This will install the latest version of the package.

Other versions

Important

GitLab Package Registry is mutable, which means we can delete packages if we
want to. For now, we are experimenting with publishing a lot, so we can’t
guarantee that a particular version will never get deleted from the registry,
especially the pre-release versions.

To install other versions and to view the generic information about the package,
you can navigate to
the package registry page [https://gitlab.com/LaTeXBuddy/LaTeXBuddy/-/packages].

Build from source

With Docker

Caution

The following is an experimental Docker build of LaTeXBuddy. It is not optimized and very unstable.

Prerequisites: Docker [https://www.docker.com/products/docker-desktop]

The image is sadly not being distributed yet, so you have to build it yourself.
It isn’t complicated, but it takes around 7 minutes on a MacBook Pro and takes
about 8 GB of extra space (the built container is around 1,15 GB). Once built,
the image can be reused.

	Build the image and tag it:

docker build -t latexbuddy/latexbuddy .

	To run the image once, run the following command:

docker run --rm -v $(pwd):/latexbuddy latexbuddy/latexbuddy file_to_check.tex

This will create a container, run the command on the file file_to_check.tex
in your current directory. If you wish to set another directory as root,
change $(pwd) to the desired path.

	If you often check one file, you may want to create a container and run it
without discarding it.

	First, create a container:

docker create --name lb -v $(pwd):/latexbuddy latexbuddy/latexbuddy file_to_check.tex

The container will have the name lb — you are free to choose
a different one.

	Every time you want to run checks, run:

docker start -a lb

The -a option redirects the output in your terminal, so you can see the
output.

	After finishing, remove the container:

docker rm lb

Developing a module

Having worked with LaTeXBuddy for some time, you may want to add a checking tool that is not part of the project yet. Fortunately, this is fairly easy thanks to LaTeXBuddy’s focus on modularity.

Create a Python file for your module

Create a new .py file in latexbuddy/modules/. Within your file, add these import lines:

from typing import List

from latexbuddy.config_loader import ConfigLoader
from latexbuddy.texfile import TexFile
from latexbuddy.modules import Module
from latexbuddy.problem import Problem

You are now able to create a class inheriting from the abstract Module class which provides an API function for you to implement. Here is an example of how this could look like:

class MyNewModule(Module):

 def __init__(self):
 pass

 def run_checks(self, config: ConfigLoader, file: TexFile) -> List[Problem]:
 return []

Note

You are free to create as many other classes as needed, but remember that any class not inheriting from Module is ignored by LaTeXBuddy’s module loader.

Working with TexFile

The TexFile class encapsulates all information about the LaTeX file that is supposed to be checked. It offers these attributes:

	tex: contains the contents of the .tex file as a String (str)

	plain: contains the contents of the deTeXed version (plain text) of the .tex file as a String (str)

	tex_file: contains the .tex file’s path as a pathlib.Path object

	plain_file: contains the deTeXed version (plain text) of the .tex file as a pathlib.Path object

	is_faulty: contains a boolean that is True, if the .tex file is invalid or contains syntax errors and False otherwise

TexFile also offers two methods to convert positions in the deTeXed text to the corresponding positions in the original LaTeX code:

	get_position_in_tex(char_pos: int) -> Optional[Tuple[int, int]]: Takes in the absolute position of a character in the deTeXed text and returns the line and column of the same character in the original LaTeX code. If the specified position is invalid, None is returned.

	get_position_in_tex_from_linecol(line: int, col: int) -> Optional[Tuple[int, int]]: Takes in the line and column of a character in the deTeXed text and returns the line and column of the same character in the original LaTeX code. If the specified position is invalid, None is returned.

Working with Problem

The Problem class is a representation of a note/warning/error concerning a specific part of the text and is used as an interface between LaTeXBuddy and your module.

A Problem can be constructed with the following parameters:

position: Tuple[int, int] (optional)

A tuple specifying the problem’s position in the checked .tex file and consists of two components: (line_number, column_number). These numbers are referring to the position in the .tex file, NOT the deTeXed version.
If no position is specified, the Problem is considered general and will appear in a different section than problems with a specific position.

Note

If you are checking the TeX version of the file and only have the absolute position of a problem, you can convert it using the first two return values of the absolute_to_linecol method in latexbuddy.tools.

Note

If you are checking the deTeXed version of the file, you need to convert the position of the problematic text in the deTeXed text into the position of the same text in the original LaTeX code using either the get_position_in_tex or the get_position_in_tex_from_linecol method provided by TexFile, depending on whether you are working with absolute positions or line, column tuples.

text: str (required)

A string containing the problematic part of the scanned text.

checker: Union[Type[NamedModule], NamedModule] (required)

A Module instance or the type of a checker inheriting from Module (this is used to ensure that module names stay consistent throughout LaTeXBuddy outputs).

file: pathlib.Path (required)

Attention

This is deprecated.

The path of the LaTeX file this problem refers to, given as a pathlib path.

p_type: Optional[str]

optional: A string containing an internal ID of the problem’s category (e.g. ‘double_whitespace’ or ‘missing_semicolon’).

severity: ProblemSeverity = ProblemSeverity.WARNING

optional: an Enum specifying the level of severity for this problem. Valid values are:

	NONE: Problems are not being highlighted, but are still being output.

	INFO: Problems are highlighted with light blue color. These are suggestions; problems, that aren’t criticizing the text.
Example: suggestion to use “lots” instead of “a lot”

	WARNING: Problems are highlighted with orange color. These are warnings about problematic areas in documents. The files compile and work as expected, but some behavior may be unacceptable.
Example: warning about using “$$” in LaTeX

	ERROR: Problems are highlighted with red color. These are errors, that prevent the documents to compile correctly.
Example: not closed environment, or wrong LaTeX syntax

defaults to: ProblemSeverity.WARNING

category: Optional[str]

optional: a string containing the name of this problem’s broader category, for example “grammar”, “spelling” or “latex”.

defaults to: None

description: Optional[str]

optional: a string containing a description of this problem or the reasoning behind it.

defaults to: None

context: Optional[Tuple[str, str]]

optional: the context of the problematic part of the text, given as a tuple containing the text before and after the problematic part. Although the size of the context is not restricted, it is recommended not to give considerably more context than the sentence that contains the problem.

defaults to: None

suggestions: List[str]

optional: suggestions to improve the problematic part of the text, given as a List of strings.

defaults to: None

key: Optional[str]

optional: a semi-unique string used to compare two problems (possibly from different checking tools). This is used primarily for whitelisting, so be as precise as needed, without being overly specific. It is recommended to start the key with the name of your new tool to ensure uniqueness among all checking tools.

If it’s a pure spelling tool we recommend to put

key = "spelling" + "_" + errortext

as it allows for a more universal whitelist. If not you can also try to isolate the spelling errors and then set the key like above.

If not set you will not be able to whitelist your Problems!

defaults to: None

Further Information

For advanced information to improve the capabilities of your module and to make your life easier, feel free to read the manual on Advanced API.
This page includes documentation for LaTeXBuddy’s config and included utilities.

Using the API

New to LaTeXBuddy?

Please consider reading the Beginners’ Guide to Module development first.

As you proceed developing your own module, you might want to simplify repeating processes and add some configuration options. Concerning that, LaTeXBuddy is offering its simple-to-use ConfigLoader and tools features.

Using the ConfigLoader

The ConfigLoader offers a simple way to configure LaTeXBuddy to your needs by providing support for a config file and integrating CLI flags.

Adding config options

LaTeXBuddy offers a default config.py, that can be tailored to your needs. To add your module and options to the config.py, follow these steps:

Add your module to config.py

To include your module into config, just add a new top-level entry into the modules dictionary consisting of your module class name as the key and an empty dictionary for the config options as the value.

Example:

main = {...}

modules = {
 "YourModuleClassName": {},
}

Add options for your module

As you want to add some config options for your module, that’s the next step to complete. Just add your desired options to the empty dictionary created beforehand.

Example:

main = {...}

modules = {
 "YourModuleClassName": {
 "sample_option": "sample_value",
 "meaning_of_life": 42,
 },
}

Note

As you may want to use LaTeXBuddy’s enable/disable function, an "enabled":True/False entry needs to be added to your configuration.

Getting config options

Accessing configuration options generally requires two components: The first one is an instance or the type of a checker Module, or None for the configuration options of the main LaTeXBuddy instance.
The second one is key which is essentially a string of your choosing that identifies a specific configuration option.

Config values can also be verified by providing a type, regex (for strings) or a list of possible values, which is handled via the parameters verify_type, verify_regex and verify_choices.
If more than one verify parameter is specified, all specified requirements are checked. If a regex is provided, the verify_type parameter will always be set to AnyStr (even if another type was specified).

All configuration parameters are read from the config file that is specified in the Command Line call, but since CLI flags are translated to configuration options in ConfigLoader as well, they override any configuration option for the main LaTeXBuddy instance with the same key that might exist in the config file (e.g. “language”, “output”, “enable-modules-by-default” etc.).

ConfigLoader provides two functions for fetching configuration options:

get_config_option(module, key, verify_type, verify_regex, verify_choices) -> Any

This method fetches the value of the config entry with the specified key for the specified tool or raises a ConfigOptionNotFoundError, if such an entry doesn’t exist.

Parameters:

	module: Optional[Union[Type[NamedModule], NamedModule]]: type or instance of the Module owning the config option

	key: str: key of the config option

	verify_type: Type: type that the config entry is required to be an instance of

	verify_regex: Optional[str]: regular expression that the config entry is required to match fully

	verify_choices: Optional[Union[List[Any], Tuple[Any], Set[Any]]]: a list/tuple/set of valid values in which the config entry is required to be contained

get_config_option(module, key, default_value, verify_type, verify_regex, verify_choices) -> Any

This method fetches the value of the config entry with the specified key for the specified tool or returns the specified default value, if such an entry doesn’t exist.

Parameters:

	module: Optional[Union[Type[NamedModule], NamedModule]]: type or instance of the Module owning the config option

	key: str: key of the config option

	default_value: Any: default value in case the requested option doesn’t exist

	verify_type: Type: type that the config entry is required to be an instance of

	verify_regex: Optional[str]: regular expression that the config entry is required to match fully

	verify_choices: Optional[Union[List[Any], Tuple[Any], Set[Any]]]: a list/tuple/set of valid values in which the config entry is required to be contained

Using the included utilities

LaTeXBuddy offers a variety of utility methods in tools.py which mainly include functions for finding and executing shell commands or python functions and converting character positions between absolute indexing and line, column tuples. The concrete functions are:

execute(*cmd: str, encoding: str) -> str

Executes a shell command via python’s subprocess library and returns the combined contents of stdout and stderr as a string.

Parameters:

	*cmd: Tuple of strings representing the shell command and its flags and arguments

	optional: encoding: name of the encoding python uses to decode the contents in stdout and stderr

Example usage:

execute command 'echo Hello World!' with tuple notation

execute("echo", "Hello", "World!")

execute command 'echo Hello World!' with list notation
my_command = ["echo"]
my_command.append("Hello")
my_command.append("World!")

execute(*my_command)

execute_background(*cmd: str) -> subprocess.Popen

Executes a shell command in the background via python’s subprocess library and returns a handle for the running process that can be used to terminate it with kill_background_process.
Any output by the background process to stdout or stderr will be ignored.

Parameters:

	*cmd: Tuple of strings representing the shell command and its flags and arguments

kill_background_process(process: subprocess.Popen) -> None

Kills a previously started background process by sending a SIGTERM signal.

Parameters:

	process: Popen object representing a running process. Accepts return values of execute_background.

execute_no_errors(*cmd: str, encoding: str = "ISO8859-1") -> str

Executes a shell command via python’s subprocess library and returns the contents of stdout as a string. Any output to stderr is ignored.

Parameters:

	*cmd: Tuple of strings representing the shell command and its flags and arguments

	optional: encoding: string name of the encoding python uses to decode the contents in stdout

find_executable(name: str, to_install: Optional[str] = None, logger: Optional[Logger] = None, log_errors: bool = True) -> str

Finds the path to a given executable with a call to which. Consequently, any executable that should be found must at least be in the user’s $PATH.
Raises a FileNotFoundError, if the executable could not be located.

Parameters:

	name: name of the executable to be found

	optional: to_install: correct name of the program or project which the requested executable belongs to (used in log messages, defaults to the value of name, if unspecified)

	optional: logger: logger instance of the calling module, defaults to the standard logger for tools.py

	optional: log_errors: specifies whether error messages should be logges as error (True) or debug (False) messages

absolute_to_linecol(text: str, position: int) -> Tuple[int, int, List[int]]

Calculates the line and column of a given character from the absolute position of that character in a specific text.

Parameters:

	text: text containing the character

	position: absolute position of the character (0-based)

get_line_offsets(text: str) -> List[int]

Calculates absolute character offsets for each line in the specified text and returns them as a list.

Indices correspond to the line numbers, but are 0-based. For example, if the first 4 lines contain 100 characters (including line breaks), result[4] will be 100. result[0] is always 0.

Parameters:

	text: the text to be processed

is_binary(file_bytes: bytes) -> bool

Detects whether the bytes of a file contain binary code or not.
For correct detection, it is recommended, that at least 1024 bytes were read.

Parameters:

	bytes: bytes of a file

execute_no_exceptions(function_call: Callable[[], None], error_message: str, traceback_log_level: Optional[str] = None) -> None

Calls a function and catches any Exception that is raised during this.
If an Exception is caught, the function is aborted and the error is logged, but as the Exception is caught, the program won’t crash.

Parameters:

	function_call: python function to be executed

	optional: error_message: custom error message passed to the logger, defaults to "An error occurred while executing lambda function"

	optional: traceback_log_level: sets the log_level that is used to log the error traceback. If it is None, no traceback will be logged. Valid values are: “DEBUG”, “INFO”, “WARNING”, “ERROR”

Command-line interface

Main executable

The one-stop-shop for LaTeX checking.

usage: latexbuddy [-h] [--version] [--verbose] [--config CONFIG]
 [--output OUTPUT] [--language LANGUAGE]
 [--whitelist WHITELIST]
 [--format {HTML,html,JSON,json,HTML_FLASK,html_flask}]
 [--enable-modules ENABLE_MODULES | --disable-modules DISABLE_MODULES]
 file [file ...]

Positional Arguments

	file

	File(s) that will be processed.

Named Arguments

	--version, -V

	show program’s version number and exit

	--verbose, -v

	Display debug output

Default: 0

	--config, -c

	Location of the config file.

Default: config.py

	--output, -o

	Directory, in which to put the output file.

	--language, -l

	Target language of the file.

	--whitelist, -w

	Location of the whitelist file.

	--format, -f

	Possible choices: HTML, html, JSON, json, HTML_FLASK, html_flask

Format of the output file (either HTML or JSON).

	--enable-modules

	Comma-separated list of module names that should be executed. (Any other module will be implicitly disabled!)

	--disable-modules

	Comma-separated list of modules that should be disabled. (Every other module will be implicitly enabled!)

More documentation at <https://latexbuddy.readthedocs.io/>.

Whitelist operations

Perform whitelist operations.

usage: latexbuddy-whitelist [-h] [--whitelist WHITELIST]
 {add,from-wordlist} ...

Named Arguments

	--whitelist, -w

	Location of the whitelist file.

Default: ./whitelist

Sub-commands

add

Add keys to the whitelist.

latexbuddy-whitelist add [-h] KEY [KEY ...]

Positional Arguments

	KEY

	Keys that should be added to whitelist. Ideally, they should have been copied from the HTML output

from-wordlist

Read allowed words and add them to whitelist.

latexbuddy-whitelist from-wordlist [-h] WORD_LIST LANGUAGE

Positional Arguments

	WORD_LIST

	Path to the wordlist file. It should contain one word per line.

	LANGUAGE

	Language of the words in the wordlist

API Reference

Main instance

Contains the main LaTeXBuddy instance class.

	
class latexbuddy.buddy.LatexBuddy

	The main instance of the applications that controls all the internal
tools.

This is a singleton class with only one instance and exclusively
static methods.

	
static add_error(problem)

	Adds the error to the errors dictionary.

UID is used as key, the error object is used as value.

	Parameters:

	problem (Problem) – problem to add to the dictionary

	Return type:

	None

	
static add_to_whitelist(uid)

	Adds the error identified by the given UID to the whitelist.

Afterwards this method deletes all other errors that are
the same as the one just whitelisted.

	Parameters:

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) – the UID of the error to be deleted

	Return type:

	None

	
static check_whitelist()

	Removes errors that are whitelisted.

	Return type:

	None

	
static execute_module(module)

	Executes checks for provided module and returns its Problems. This
method is used to parallelize the module execution.

	Parameters:

	module (Module) – module to execute

	Returns:

	list of resulting problems

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.problem.Problem]

	
static init(config_loader, module_provider, file_to_check, path_list, *, compile_tex)

	Initializes the LaTeXBuddy instance.

	Parameters:

	
	config_loader (ConfigLoader) – ConfigLoader object to manage config options

	module_provider (ModuleProvider) – ModuleProvider instance as a source of
Module instances for running checks on
the specified file

	file_to_check (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – file that will be checked

	path_list (list [https://docs.python.org/3/library/stdtypes.html#list][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – a list of the paths for the html output

	compile_tex (bool [https://docs.python.org/3/library/functions.html#bool]) – boolean if the tex file should be compiled

	Return type:

	None

	
static output_file()

	Writes all current problems to the specified output file.

	Return type:

	None

	
static output_html()

	Renders all current problem objects as HTML and writes the file.

	Return type:

	None

	
static output_json()

	Writes all the current problem objects to the output file.

	Return type:

	None

	
static run_tools()

	Runs all modules in the LaTeXBuddy toolchain in parallel.

	Return type:

	None

Configuration

This module describes the LaTeXBuddy config loader and its properties.

	
class latexbuddy.config_loader.ConfigLoader(cli_arguments=None)

	Describes a ConfigLoader object.

The ConfigLoader processes LaTeXBuddy’s cli arguments and loads the
specified config file or the default config file, if none is
specified. ConfigLoader also offers methods for accessing config
entries with the option to specify a default value on Failure.

	Parameters:

	cli_arguments (Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace] | None) –

	
get_config_option(module, key, verify_type=typing.Any, verify_regex=None, verify_choices=None)

	This method fetches the value of the config entry with the specified
key for the specified tool or raises a ConfigOptionNotFoundError, if
such an entry doesn’t exist or the retrieved entry does not match a
specified verification criterion.

	Parameters:

	
	module (Optional[Union[Type[NamedModule], NamedModule]]) – type or an instance of the module owning the
config option; if unspecified, this method will
look for a configuration option in the main
instance’s dictionary

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – key of the config option

	verify_type (Type [https://docs.python.org/3/library/typing.html#typing.Type]) – typing type that the config entry is
required to be an instance of (otherwise
ConfigOptionVerificationError is raised)

	verify_regex (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – regular expression that the config entry
is required to match fully (otherwise
ConfigOptionVerificationError is
raised)

Note: this overrides verify_type with ‘AnyStr’

	verify_choices (List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | Set [https://docs.python.org/3/library/typing.html#typing.Set][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – a list/tuple/set of valid values in
which the config entry needs to be
contained in order to be valid

	Returns:

	the value of the requested config option, if it exists

	Raises:

	ConfigOptionNotFoundError, if the requested config
option doesn’t exist

	Raises:

	ConfigOptionVerificationError, if the requested config
option does not meet the specified criteria

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	
get_config_option_or_default(module, key, default_value, verify_type=typing.Any, verify_regex=None, verify_choices=None)

	This method fetches the value of the config entry with the specified
key for the specified tool or returns the specified default value, if
such an entry doesn’t exist or the retrieved entry does not match a
specified verification criterion.

	Parameters:

	
	module (Optional[Union[Type[NamedModule], NamedModule]]) – type or an instance of the module owning the
config option; if unspecified, this method will
look for a configuration option in the main
instance’s dictionary

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – key of the config option

	default_value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – default value in case the requested
option doesn’t exist

	verify_type (Type [https://docs.python.org/3/library/typing.html#typing.Type]) – typing type that the config entry is
required to be an instance of (otherwise
ConfigOptionVerificationError is raised)

	verify_regex (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – regular expression that the config entry
is required to match fully (otherwise
ConfigOptionVerificationError is raised).

Note: this overrides verify_type with
typing.AnyStr [https://docs.python.org/3/library/typing.html#typing.AnyStr]

	verify_choices (List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | Set [https://docs.python.org/3/library/typing.html#typing.Set][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – a list/tuple/set of valid values in
which the config entry needs to be
contained in order to be valid

	Returns:

	the value of the requested config option or
default_value, if the config option doesn’t exist

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	
load_configurations(config_file_path)

	This helper-function loads the contents of a specified config.

.py- file.

	Parameters:

	config_file_path (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – config file to be loaded (.py)

	Returns:

	None

	Return type:

	None

TeX file

This module defines new TexFile class used to abstract files LaTeXBuddy is
working with.

	
class latexbuddy.texfile.TexFile(file, *, compile_tex)

	A simple TeX file.

This class reads the file, detects its encoding and saves it as text
for future editing.

	Parameters:

	
	file (Path) –

	compile_tex (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
get_position_in_tex(char_pos)

	Gets position of a character in the original file.

	Parameters:

	char_pos (int [https://docs.python.org/3/library/functions.html#int]) – absolute char position

	Returns:

	line and column number of the respective char in the tex file

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | None

Modules

	
class latexbuddy.module_loader.ModuleLoader(directory)

	This class encapsulates all features necessary to load LaTeXBuddy
modules from a specified directory.

	Parameters:

	directory (Path) –

	
find_py_files()

	This method finds all .py files within the ModuleLoader’s directory
or any subdirectories and returns a list of their paths.

	Returns:

	a list of all Python files in the ModuleLoader’s
directory (or subfolders)

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	
import_py_files()

	This method loads a python module from the specified file path for a
list of file paths.

	Returns:

	a list of python modules ready to be used

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][module]

	
load_modules()

	This method loads every module that is found in the ModuleLoader’s
directory.

	Returns:

	a list of instances of classes implementing the Module API

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.modules.Module]

	
load_selected_modules(cfg)

	This method loads every module that is found in the ModuleLoader’s
directory and only returns instances of modules that are enabled in the
specified configuration context.

	Parameters:

	cfg (ConfigLoader) – ConfigLoader instance containing config options for
enabled/disabled tools

	Returns:

	a list of instances of classes implementing the Module
API which have been enabled in the specified
configuration context

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.modules.Module]

	
class latexbuddy.module_loader.ModuleProvider

	This interface class defines all methods necessary to provide a list of
instances of modules that implement the Module API, which is required in
order for the instances to be executed by the main LatexBuddy instance.

	
abstract load_selected_modules(cfg)

	This method loads every module that is found in the ModuleLoader’s
directory and only returns instances of modules that are enabled in the
specified configuration context.

	Parameters:

	cfg (ConfigLoader) – ConfigLoader instance containing config options for
enabled/disabled tools

	Returns:

	a list of instances of classes implementing the Module
API which have been enabled in the specified
configuration context

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.modules.Module]

Problems

This module describes the LaTeXBuddy Problem class and its properties.

Problems are found by Checkers. Checkers are free to implement their own
Problem types, however, LaTeXBuddy will most
surely not display extra metadata.

	
class latexbuddy.problem.Problem(position, text, checker, file, severity=ProblemSeverity.WARNING, p_type=None, length=None, category=None, description=None, context=None, suggestions=None, key=None)

	Describes a Problem object.

A Problem object contains information about a problem detected by a
checker. For example, it can be wrong LaTeX code or a misspelled
word.

	Parameters:

	
	position (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | None) –

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	checker (type [https://docs.python.org/3/library/functions.html#type][NamedModule] | NamedModule) –

	file (Path) –

	severity (ProblemSeverity) –

	p_type (str [https://docs.python.org/3/library/stdtypes.html#str] | None) –

	length (int [https://docs.python.org/3/library/functions.html#int] | None) –

	category (str [https://docs.python.org/3/library/stdtypes.html#str] | None) –

	description (str [https://docs.python.org/3/library/stdtypes.html#str] | None) –

	context (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None) –

	suggestions (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str] | None) –

	
better_eq(key)

	equal method based on the key/CompareID.

	Parameters:

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class latexbuddy.problem.ProblemJSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Provides JSON serializability for class Problem.

	
default(obj)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	Parameters:

	obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
class latexbuddy.problem.ProblemSeverity(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Defines possible problem severity grades.

Problem severity is usually preset by the checkers themselves.
However, a user should be able to redefine the severity of a
specific problem, using either category, key, or
p_type.

	"none" problems are not being highlighted, but are still
being output.

	"info" problems are highlighted with light blue colour. These
are suggestions; problems, that aren’t criticising the text.
Example: suggestion to use “lots” instead of “a lot”

	"warning" problems are highlighted with orange colour. These
are warnings about problematic areas in documents. The files
compile and work as expected, but some behaviour may be
unacceptable.
Example: warning about using “$$” in LaTeX

	"error" problems are highlighted with red colour. These are
errors, that prevent the documents to compile correctly.
Example: not closed environment, or plain wrong LaTeX syntax

	
latexbuddy.problem.set_language(lang)

	Sets the static variable language used for key generation.

	Parameters:

	lang (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – global language that the modules currently work with

	Return type:

	None

Output

	
class latexbuddy.output.Interval(problems, start=None, end=None)

	This class describes an interval with problems.

An interval is a section of text, defined byt its start and end
positions, that contains Problem
objects.

	Parameters:

	
	problems (Problem | list [https://docs.python.org/3/library/stdtypes.html#list][Problem]) – list of problems on the interval

	start (int [https://docs.python.org/3/library/functions.html#int] | None) – start symbol of the interval

	end (int [https://docs.python.org/3/library/functions.html#int] | None) – end symbol of the interval

	
intersects(other)

	Determines whether or not the other interval intersects with ‘self’.

	Parameters:

	other (Interval) – other interval to consider

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
perform_intersection(other)

	Performs an intersection of two intervals and returns a list of new
non-intersecting intervals to replace the two specified intervals
‘self’ and ‘other’, if the intervals actually intersect. Should the
intervals not intersect, None is returned, indicating that there is no
need to replace the two intervals. The intervals in the returned list
are sorted by their start index in ascending order.

	Parameters:

	other (Interval) – other interval to intersect with ‘self’

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.output.Interval] | None

	
latexbuddy.output.add_basic_problem_intervals(line_intervals, problems, tex_lines)

	Filters out problems without a position attribute or with length zero
and inserts the remaining ones into the line_intervals list.

	Parameters:

	
	line_intervals (list [https://docs.python.org/3/library/stdtypes.html#list][list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.output.Interval]]) – List of lists of Intervals for any given line

	problems (list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.problem.Problem]) – list of problems to be inserted as Intervals

	tex_lines (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – contents of the .tex-file

	Return type:

	None

	
latexbuddy.output.create_empty_line_interval_list(lines)

	Creates and returns a list of (empty) lists of Intervals. The outer list
will contain exactly len(tex_lines) + 1 empty lists.

	Parameters:

	lines (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – individual lines of a .tex-file as a list of strings

	Returns:

	a list of empty lists that meet the specified dimensions

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.output.Interval]]

	
latexbuddy.output.generate_wrapper_html_tags(interval)

	Generates and returns a pair of HTML tags to wrap the text in
the specified interval.

	Parameters:

	interval (Interval) – interval, specifying the position and metadata of
the tags

	Returns:

	a tuple of two strings, containing an opening and
a closing tag for the specified interval object

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
latexbuddy.output.highlight(tex, problems)

	Highlights the TeX code using the problems’ data.

	Parameters:

	
	tex (str [https://docs.python.org/3/library/stdtypes.html#str]) – TeX source

	problems (list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.problem.Problem]) – list of problems

	Returns:

	HTML string with highlighted errors, ready to be put inside <pre>

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
latexbuddy.output.mark_intervals_in_tex(lines, line_intervals)

	Adds HTML marker-tags for every interval in multiple lines of TeX code.

For every line in lines, and for every interval in
line_intervals for the respective line, this method wraps it
with tags and returns the resulting line. This method
also escapes all HTML control characters included in tex_line.

It basically calls mark_intervals_in_tex_line(), but the
lines are modified in-place.

	Parameters:

	
	lines (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – lines from the TeX file

	line_intervals (list [https://docs.python.org/3/library/stdtypes.html#list][list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.output.Interval]]) – list of non-intersecting intervals to be
highlighted for every line

	Return type:

	None

	
latexbuddy.output.mark_intervals_in_tex_line(line, intervals)

	Adds HTML marker-tags for every interval in a line of TeX code.

For every interval in intervals, this method wraps it with
 tags and returns the resulting line. This method also
escapes all HTML control characters included in tex_line.

	Parameters:

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – line from the TeX file

	intervals (list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.output.Interval]) – list of non-intersecting intervals to be
highlighted in the line

	Returns:

	resulting line as a string, containing tags

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
latexbuddy.output.problem_key(problem)

	Returns a number for each problem to be able to sort them.

This puts YaLaFi’s problems on top, followed by errors without location.

	Parameters:

	problem (Problem) – problem object

	Returns:

	error’s “rating” for sorting

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
latexbuddy.output.render_general_html(template, file_name, file_text, problems, path_list, pdf_path)

	Renders an HTML page based on file contents and discovered problems.

	Parameters:

	
	template (Template) – HTML template to use for generation

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name

	file_text (str [https://docs.python.org/3/library/stdtypes.html#str]) – contents of the file

	problems (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], latexbuddy.problem.Problem]) – dictionary of errors returned from latexbuddy

	pdf_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path of pdf file

	path_list (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – a list, containing all file paths to the checked files

	Returns:

	generated HTML

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
latexbuddy.output.resolve_interval_intersections(intervals)

	Finds any intersecting intervals and replaces them with non-
intersecting intervals that may contain more than one problem.

	Parameters:

	intervals (list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.output.Interval]) – list of intervals in one line to be checked for
intersections

	Return type:

	None

Preprocessing

	
class latexbuddy.preprocessor.LineProblemFilter(start_line, end_line=None)

	ProblemFilter implementation that only considers a problem’s line
position.

	Parameters:

	
	start_line (int [https://docs.python.org/3/library/functions.html#int]) –

	end_line (int [https://docs.python.org/3/library/functions.html#int] | None) –

	
custom_match(problem)

	Matches a given Problem object based on custom parameters of the
subclass implementation.

	Parameters:

	problem (Problem) – Problem object to be examined

	Returns:

	True, if the problem matches all custom
requirements, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
custom_parameters_equal(other)

	Determines, if two custom ProblemFilter objects are equal.

Two objects of type ProblemFilter are considered
equal as long as they are:

	of the same type

	equal in terms of their custom parameters

Caution

This method does not check the equality of start_line`
and end_line!

	Parameters:

	other (ProblemFilter) – second custom ProblemFilter to be compared with
the current one

	Returns:

	True, if the other custom ProblemFilter is equal
to the current one, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class latexbuddy.preprocessor.ModuleProblemFilter(module_name, start_line, end_line=None)

	ProblemFilter implementation that filters problems, if they have been
created by a specified LaTeXBuddy module.

	Parameters:

	
	module_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	start_line (int [https://docs.python.org/3/library/functions.html#int]) –

	end_line (int [https://docs.python.org/3/library/functions.html#int] | None) –

	
custom_match(problem)

	Matches a given Problem object based on custom parameters of the
subclass implementation.

	Parameters:

	problem (Problem) – Problem object to be examined

	Returns:

	True, if the problem matches all custom
requirements, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
custom_parameters_equal(other)

	Determines, if two custom ProblemFilter objects are equal.

Two objects of type ProblemFilter are considered
equal as long as they are:

	of the same type

	equal in terms of their custom parameters

Caution

This method does not check the equality of start_line`
and end_line!

	Parameters:

	other (ProblemFilter) – second custom ProblemFilter to be compared with
the current one

	Returns:

	True, if the other custom ProblemFilter is equal
to the current one, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class latexbuddy.preprocessor.Preprocessor

	This class represents the LaTeXBuddy in-file preprocessor.

the Preprocessor is capable of parsing buddy commands disguised as
LaTeX comments from a TexFile object using regexes and is able to
filter any given Problem or list of Problems accordingly.

	
apply_preprocessor_filter(problems)

	Applies all parsed ProblemFilters and returns all non- matching
Problems.

	Parameters:

	problems (list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.problem.Problem]) – list of Problems to filter

	Returns:

	filtered list of Problems

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.problem.Problem]

	
matches_preprocessor_filter(problem)

	Checks, if the provided Problem matches any filter.

	Parameters:

	problem (Problem) – Problem to check

	Returns:

	false if matching; true otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
regex_parse_preprocessor_comments(file)

	Parses preprocessor statements in a TeX file.

This method takes a TexFile
object and parses all preprocessor statements contained in it.
This results in a set of of ProblemFilter objects,
which are then added to this instance’s list of filters and
later applied to the problems.

	Parameters:

	file (TexFile) – TeX file object containing the LaTeX source code
to be parsed

	Return type:

	None

	
class latexbuddy.preprocessor.ProblemFilter(start_line, end_line=None)

	Describes the base class for any problem filter.

ProblemFilter provides functionality to define a start and
end line and to match a Problem based
on its line position.

ProblemFilter objects can be made “open-ended” by omitting the
end_line parameter. This results in a filter matching any
problem located at or below the start_line. Open-ended filters
can later be closed by supplying the end_line via the
end() method.

For more diverse filters, ProblemFilter provides the following
abstract methods which must be implemented by all subclasses:
custom_match() and custom_parameters_equal().

	Parameters:

	
	start_line (int [https://docs.python.org/3/library/functions.html#int]) – beginning of the filter’s area

	end_line (int [https://docs.python.org/3/library/functions.html#int] | None) – end of the filter’s area (open-ended, if omitted)

	
abstract custom_match(problem)

	Matches a given Problem object based on custom parameters of the
subclass implementation.

	Parameters:

	problem (Problem) – Problem object to be examined

	Returns:

	True, if the problem matches all custom
requirements, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract custom_parameters_equal(other)

	Determines, if two custom ProblemFilter objects are equal.

Two objects of type ProblemFilter are considered
equal as long as they are:

	of the same type

	equal in terms of their custom parameters

Caution

This method does not check the equality of start_line`
and end_line!

	Parameters:

	other (ProblemFilter) – second custom ProblemFilter to be compared with
the current one

	Returns:

	True, if the other custom ProblemFilter is equal
to the current one, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
end(end_line)

	Sets the end line of ProblemFilter, if not already done.

	Parameters:

	end_line (int [https://docs.python.org/3/library/functions.html#int]) – line number of the filter’s end

	Returns:

	True if end_line was set before;
False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
match(problem)

	Matches custom filter’s requirements against a problem.

This method determines, whether a given problem is located
within the filter’s line boundaries and matches all custom
requirements that the subclass implementation imposes.

	Parameters:

	problem (Problem) – Problem object to examine

	Returns:

	True, if the problem is located in the area
covered by the ProblemFilter and matches all custom
requirements, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class latexbuddy.preprocessor.SeverityProblemFilter(severity, start_line, end_line=None)

	ProblemFilter implementation that filters problems, if they have been
created with a specified ProblemSeverity.

	Parameters:

	
	severity (ProblemSeverity) –

	start_line (int [https://docs.python.org/3/library/functions.html#int]) –

	end_line (int [https://docs.python.org/3/library/functions.html#int] | None) –

	
custom_match(problem)

	Matches a given Problem object based on custom parameters of the
subclass implementation.

	Parameters:

	problem (Problem) – Problem object to be examined

	Returns:

	True, if the problem matches all custom
requirements, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
custom_parameters_equal(other)

	Determines, if two custom ProblemFilter objects are equal.

Two objects of type ProblemFilter are considered
equal as long as they are:

	of the same type

	equal in terms of their custom parameters

Caution

This method does not check the equality of start_line`
and end_line!

	Parameters:

	other (ProblemFilter) – second custom ProblemFilter to be compared with
the current one

	Returns:

	True, if the other custom ProblemFilter is equal
to the current one, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class latexbuddy.preprocessor.WhitelistKeyProblemFilter(wl_key, start_line, end_line=None)

	This filter excludes problems, if they have been created with a
specified whitelist key.

	Parameters:

	
	wl_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – whitelist key of a problem

	start_line (int [https://docs.python.org/3/library/functions.html#int]) – beginning of the filter’s area

	end_line (int [https://docs.python.org/3/library/functions.html#int] | None) – end of the filter’s area

	
custom_match(problem)

	Matches a given Problem object based on custom parameters of the
subclass implementation.

	Parameters:

	problem (Problem) – Problem object to be examined

	Returns:

	True, if the problem matches all custom
requirements, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
custom_parameters_equal(other)

	Determines, if two custom ProblemFilter objects are equal.

Two objects of type ProblemFilter are considered
equal as long as they are:

	of the same type

	equal in terms of their custom parameters

Caution

This method does not check the equality of start_line`
and end_line!

	Parameters:

	other (ProblemFilter) – second custom ProblemFilter to be compared with
the current one

	Returns:

	True, if the other custom ProblemFilter is equal
to the current one, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Whitelist

	
latexbuddy.whitelist.add_to_whitelist(whitelist, keys)

	Adds a list of keys to the whitelist.

Keys should be valid keys, ideally copied from LaTeXBuddy HTML
output.

	Parameters:

	
	whitelist (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – path to the whitelist file

	keys (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – list of keys

	Return type:

	None

	
latexbuddy.whitelist.fill_whitelist_from_wordlist(whitelist, wordlist, language)

	Adds keys to the whitelist based on a list of words.

Words in the wordlist should all be from the same language. Each
line should be a single word.

	Parameters:

	
	whitelist (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – path to the whitelist file

	wordlist (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – path to the wordlist file

	language (str [https://docs.python.org/3/library/stdtypes.html#str]) – language of the words in the wordlist

	Return type:

	None

Utilities

Exceptions

This module defines standard exceptions that are to be raised when certain
application-specific errors occur.

	
exception latexbuddy.exceptions.ConfigOptionError

	Base Exception for errors related to loading configurations.

	
exception latexbuddy.exceptions.ConfigOptionNotFoundError

	Describes a ConfigOptionNotFoundError.

This error is raised when a requested config entry doesn’t exist.

	
exception latexbuddy.exceptions.ConfigOptionVerificationError

	Describes a ConfigOptionVerificationError.

This error is raised when a requested config entry does not meet the
specified criteria.

	
exception latexbuddy.exceptions.ExecutableNotFoundError

	This error is raised when LaTeXBuddy can not locate a third-party
executable dependency on the system it is running on.

	
exception latexbuddy.exceptions.LanguageNotSupportedError

	This error is raised when LaTeXBuddy or a submodule does not support the
configured language.

Messages

This module defines standard messages that are to be printed to the command
line as well as builders for those.

Tools

This module contains various utility tools.

	
latexbuddy.tools.absolute_to_linecol(text, position)

	Calculates line and column number for an absolute character position.

	Parameters:

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – text of file to find line:col position for

	position (int [https://docs.python.org/3/library/functions.html#int]) – absolute 0-based character position

	Returns:

	line number, column number, line offsets

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]]

	
class latexbuddy.tools.classproperty(fget=None, fset=None, fdel=None, doc=None)

	Provides a way to implement a python property with class-level
accessibility.

	
latexbuddy.tools.execute(*cmd, encoding='ISO8859-1')

	Executes a terminal command with subprocess.

See usage example in latexbuddy.aspell.

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – command name and arguments

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – output encoding

	Returns:

	command output

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
latexbuddy.tools.execute_background(*cmd)

	Executes a terminal command in background.

	Parameters:

	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – command name and arguments

	Returns:

	subprocess instance of the executed command

	Return type:

	Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	
latexbuddy.tools.execute_no_errors(*cmd, encoding='ISO8859-1')

	Executes a terminal command while suppressing errors.

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – command name and arguments

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – output encoding

	Returns:

	command output

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
latexbuddy.tools.execute_no_exceptions(function_call, error_message='An error occurred while executing lambda function', traceback_log_level=None)

	Calls a function and catches any Exception that is raised during this.

If an Exception is caught, the function is aborted and the error is
logged, but as the Exception is caught, the program won’t crash.

	Parameters:

	
	function_call (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], None]) – function to be executed

	error_message (str [https://docs.python.org/3/library/stdtypes.html#str]) – custom error message displayed in the console

	traceback_log_level (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – sets the log_level that is used to log
the error traceback. If it is None, no
traceback will be logged.
Valid values are: “DEBUG”, “INFO”,
“WARNING”, “ERROR”

	Return type:

	None

	
latexbuddy.tools.find_executable(name, to_install=None, err_logger=<Logger latexbuddy.tools (DEBUG)>, *, log_errors=True)

	Finds path to an executable.

If the executable can not be located, an error message is logged
to the specified logger, otherwise the executable’s path is logged
as a debug message.

This uses ‘which’, i.e. the executable should at least be in user’s
$PATH

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – executable name

	to_install (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – correct name of the program or project which the
requested executable belongs to (used in log
messages)

	err_logger (Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – custom logger to be used for logging debug/error
messages

	log_errors (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies whether or not this method should log
an error message, if the executable can not be
located; if this is False, a debug message will
be logged instead

	Returns:

	path to the executable

	Raises:

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – if the executable couldn’t be found

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
latexbuddy.tools.get_all_paths_in_document(file_path)

	Checks files that are included in a file.

If the file includes more files, these files will also be checked.

:param file_path:a string, containing file path
:return: the files to check

	Parameters:

	file_path (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) –

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	
latexbuddy.tools.get_command_string(cmd)

	Constructs a command string from a tuple of arguments.

	Parameters:

	cmd (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...]) – tuple of command line arguments

	Returns:

	the command string

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
latexbuddy.tools.get_line_offsets(text)

	Calculates character offsets for each line in the file.

Indices correspond to the line numbers, but are 0-based. For
example, if first 4 lines contain 100 characters (including line
breaks), result[4] will be 100. result[0] = 0.

This is a port of YaLaFi’s get_line_starts() function.

	Parameters:

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – contents of file to find offsets for

	Returns:

	list of line offsets with indices representing 0-based
line numbers

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]

	
latexbuddy.tools.is_binary(file_bytes)

	Detects whether the bytes of a file contain binary code or not.

For correct detection, it is recommended, that file_bytes is
at least 1024 bytes long.

	Sources:
	
	https://stackoverflow.com/a/7392391/4735420

	https://github.com/file/file/blob/f2a6e7cb7d/src/encoding.c#L151-L228

	Parameters:

	file_bytes (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – bytes of a file

	Returns:

	True, if the file is binary, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
latexbuddy.tools.kill_background_process(process)

	Kills previously opened background process.

For example, it can accept the return value of
execute_background() as argument.

	Parameters:

	process (Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen]) – subprocess instance of the process

	Return type:

	None

	
latexbuddy.tools.match_lines(lines, unchecked_files, checked_files)

	Matches the lines with the given regexes.

	Parameters:

	
	lines (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the lines

	unchecked_files (list [https://docs.python.org/3/library/stdtypes.html#list][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – the unchecked_files

	checked_files (list [https://docs.python.org/3/library/stdtypes.html#list][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – the checked_files

	Returns:

	the unchecked_files

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

Built-in modules

aspell

This module defines the connection between LaTeXBuddy and GNU Aspell.

	
class latexbuddy.modules.aspell.Aspell

	

	
static find_languages()

	Returns all languages supported by the current aspell installation.
Omits specific language variations like ‘en- variant_0’.

	Returns:

	list of supported languages in str format

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
format_errors(out, line_number, file)

	Parses Aspell errors and returns list of Problems.

	Parameters:

	
	line_number (int [https://docs.python.org/3/library/functions.html#int]) – the line_number for the location

	out (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – line-split output of the aspell command

	file (TexFile) – the file path

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.problem.Problem]

	
run_checks(config, file)

	Runs the Aspell checks on a file and returns the results as a list.

Requires Aspell to be set up.

	Parameters:

	
	config (ConfigLoader) – the configuration options of the calling
LaTeXBuddy instance

	file (TexFile) – LaTeX file to be checked (with built-in detex
option)

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.problem.Problem]

BibTeX

	
class latexbuddy.modules.bib_checkers.BibtexDuplicates

	

	
run_checks(config, file)

	Runs the checks and returns a list of discovered problems.

	Parameters:

	
	config (ConfigLoader) – the configuration options of the calling
LaTeXBuddy instance

	file (TexFile) – LaTeX file to be checked (with built-in detex
option)

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.problem.Problem]

	
class latexbuddy.modules.bib_checkers.NewerPublications

	

	
run_checks(config, file)

	Runs the checks and returns a list of discovered problems.

	Parameters:

	
	config (ConfigLoader) – the configuration options of the calling
LaTeXBuddy instance

	file (TexFile) – LaTeX file to be checked (with built-in detex
option)

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][latexbuddy.problem.Problem]

	
latexbuddy.modules.bib_checkers.get_bibfile(file)

	

 Server API Reference

Server API Reference

	
class latexbuddy.flask_app.FlaskConfigLoader(output_dir, language, module_selector_mode, module_selection, whitelist_id)

	
	Parameters:

	
	output_dir (Path) –

	language (str [https://docs.python.org/3/library/stdtypes.html#str] | None) –

	module_selector_mode (str [https://docs.python.org/3/library/stdtypes.html#str] | None) –

	module_selection (str [https://docs.python.org/3/library/stdtypes.html#str] | None) –

	whitelist_id (str [https://docs.python.org/3/library/stdtypes.html#str] | None) –

 Environment setup

Environment setup

OS

You can code on any system you want! However, since the project is in the first place targeted at the user of Unix-like systems, we highly recommend you install on. Here are some user-friendly distributions for you to try out:

	Ubuntu [https://ubuntu.com/] — probably, the most popular distro. Software Center, snap and apt will get you assessed with all the tools you need.

	Fedora [https://getfedora.org/] — another very popular distro. A repo for PyCharm is shipped with the OS!

Ubuntu and Fedora offer different desktop environments. If you want a macOS-like experience with little clutter and sleek designs, choose GNOME-based variants (the default ones). If you are more familiar with Windows and/or want the highest degree of customizability, choose KDE- or XFCE-based versions (Kubuntu, Fedora KDE). If you only care about performance, choose Xfce-based versions (Xubuntu, Fedora Xfce).

Users of macOS should be fine on their own. It is however recommended they install Homebrew [https://brew.sh/] for easier package management.

Windows users can also try WSL [https://docs.microsoft.com/windows/wsl/] and use Linux together with Windows with a good editor support (e.g. remote execution and debugging).

Code Editor

LaTeXBuddy is a (relatively big) Python-based project, so editing it with just a Notepad would be silly. We recommend you install a “smart” code editor, like Visual Studio Code [https://code.visualstudio.com/], or an IDE, like PyCharm [https://www.jetbrains.com/pycharm/]. Or, if you know what you’re doing, you can use Vim.

PyCharm

PyCharm offers the best toolchain for a developer, but can be a bit too heavy on CPU and RAM. Community edition will work fine, but for a better support for Web Frameworks (which partly power LaTeXBuddy) it is recommended you use the Professional version. It can be obtained for free if you’re a student or a teacher [https://www.jetbrains.com/community/education/].

Git

Make sure you’ve got Git [https://git-scm.com/] installed.

If you’re on macOS or Linux, you either already have it installed or can easily install it from a package manager. For macOS use Homebrew [https://brew.sh/], for other Linux repos it can be different; consult Google for “{DISTRO} package manager”.

If you use Windows (without WSL), install Git from the official website [https://git-scm.com/]. Choose “Git Bash” as your shell as it offers a Linux-like experience.

Most of Git’s initial settings are okay, however it still needs to be configured. First and foremost, your name and email; execute the following commands:

git config --global user.name "Max Mustermann" # replace with your name
git config --global user.email "m.mustermann@example.de" # replace with your email

You can also set this up on a per-project basis. Navigate to the repository and replace --global with --local in the commands above. This will update your email and name for the repository you’re in.

When a Git conflict comes our way, we want to rebase our changes rather than merge them — this makes the git tree look cleaner. Execute

git config --global pull.rebase true

Client

For easier work you may want to use a Git GUI client. Luckily, there is a plethora of choices for you! VSCode and PyCharm offer very robust built-in Git editors. Other good choices include, but are not limited to: Fork [https://fork.dev/], GitHub Desktop [https://desktop.github.com/], GitKraken [https://www.gitkraken.com/], Sourcetree [https://www.sourcetreeapp.com/], etc.

Python

Obviously, a version of Python [https://www.python.org/] is required for you to develop LaTeXBuddy.

It is recommended, that the development is done using the latest Python 3 version (as this is written, it’s 3.11.1). However, since the app aims to support Python versions down to 3.7, it is also recommended, that you have this version installed as well.

Note: on Ubuntu and other Debian-based distros it takes a long time until the newest Python version arrives to the package manager repositories. It can be, that 3.8 is the newest version you can install. It’s okay; however, if you want to have the newest version, use a Python version manager or build the needed version from sources.

To be able to “juggle” around Python versions easily, a Python version manager is recommended. pyenv [https://github.com/pyenv/pyenv] is pretty much the standard.

Windows users can also install both Python 3.7 and Python 3.11 from .exe installers and set up their editors to use separate versions for separate occasions.

Tox

Tox [https://tox.wiki/] is the environment manager and runner that we use. It is crucial that you install it. You can install it via pip; consult the official installation instructions [https://tox.wiki/en/latest/installation.html].

pre-commit

Last but not least, we use pre-commit [https://pre-commit.com/] for Git hook management. It will run all the linting and formatting tools every time you commit, so you won’t forget it.

Install pre-commit [https://pre-commit.com/] as described on the website, and install the hooks:

pre-commit install

 Authoring a change

Authoring a change

Log your Changes

To track the changes, we use towncrier [https://towncrier.readthedocs.io/en/stable/index.html]. Instead of writing all changes to a big CHANGELOG file, we propose you author the changelog entries as small file snippets.

After you have implemented a change, create a file under changelog.d/ with the name of <ISSUE_NUMBER>.<CATEGORY>.md, where <ISSUE_NUMBER> is the number of the issue you’re closing with your change, and <CATEGORY> is one of: breaking, add, change, fix, remove, deprecate, internal. If you don’t have an issue number (for example, you directly proposed a pull request), use some unique ID with a + sign prepended.

For example, this is the changelog entry for introducing towncrier, stored in the file +towncrier.internal.md:

Towncrier is now used to generate the changelog

 Releasing a new version

Releasing a new version

This section describes the process of releasing a new version of LaTeXBuddy. We
do not have a release schedule; the releases are usually published whenever we
want to. This may be changed later to a model where every push to master
publishes a new version.

Note

LaTeXBuddy is not being published to PyPI as of now. The only way to get it
is from GitLab Package Registry. See install docs for more
information.

Requirements for a release

The releases are usually started by the maintainers. To kick off the initial
release discussion, one has to create a new branch off the master branch and
name it release/<VERSION>. For example: release/0.5.0. Then, a merge
request with the title “Draft: Prepare release <VERSION>” has to be created.

Upon creating the release, one has to do various checks before the merge request
can be un-drafted. This includes:

	running tests under every Python version (is usually done by the CI)

	compiling the CHANGELOG with Towncrier:

towncrier build --version <VERSION> --yes

	checking newly documentation for correct rendering

After doing all that, the merge request can be un-drafted. It still has to get
a review of at least one maintainer before it can be merged.

Releasing

Once the release is checked and everything seems fine, a maintainer can proceed
with the release:

	Merge the request into the master branch

	After the pipeline has completed, create a tag v<VERSION> on the latest
commit

	Wait for the release pipeline to publish the package and to create a new
release

 GNU Free Documentation License

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation,
Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify
or distribute the work in a way requiring permission under copyright
law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”
of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

	A. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a
previous version if the original publisher of that version
gives permission.

	B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

	C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

	D. Preserve all the copyright notices of the Document.

	E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

	F. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the
Addendum below.

	G. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document’s
license notice.

	H. Include an unaltered copy of this License.

	I. Preserve the section Entitled “History”, Preserve its Title,
and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the
Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the
previous sentence.

	J. Preserve the network location, if any, given in the Document
for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was
published at least four years before the Document itself, or if
the original publisher of the version it refers to
gives permission.

	K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

	L. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.

	M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

	N. Do not retitle any existing section to be Entitled
“Endorsements” or to conflict in title with any Invariant Section.

	O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled
“History”; likewise combine any sections Entitled “Acknowledgements”,
and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”,
“Dedications”, or “History”, the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense, or distribute it is void, and will
automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site
means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (C) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the “with … Texts.” line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to
permit their use in free software.

 Python Module Index

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 latexbuddy	

 	
 	
 latexbuddy.buddy	

 	
 	
 latexbuddy.config_loader	

 	
 	
 latexbuddy.exceptions	

 	
 	
 latexbuddy.flask_app	

 	
 	
 latexbuddy.messages	

 	
 	
 latexbuddy.module_loader	

 	
 	
 latexbuddy.modules.aspell	

 	
 	
 latexbuddy.modules.bib_checkers	

 	
 	
 latexbuddy.modules.chktex	

 	
 	
 latexbuddy.modules.diction	

 	
 	
 latexbuddy.modules.languagetool	

 	
 	
 latexbuddy.modules.logfilter	

 	
 	
 latexbuddy.modules.own_checkers	

 	
 	
 latexbuddy.modules.proselint_checker	

 	
 	
 latexbuddy.modules.yalafi_checker	

 	
 	
 latexbuddy.output	

 	
 	
 latexbuddy.preprocessor	

 	
 	
 latexbuddy.problem	

 	
 	
 latexbuddy.texfile	

 	
 	
 latexbuddy.tools	

 	
 	
 latexbuddy.whitelist	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	absolute_to_linecol() (in module latexbuddy.tools)

 	add_basic_problem_intervals() (in module latexbuddy.output)

 	add_error() (latexbuddy.buddy.LatexBuddy static method)

 	
 	add_to_whitelist() (in module latexbuddy.whitelist)

 	(latexbuddy.buddy.LatexBuddy static method)

 	apply_preprocessor_filter() (latexbuddy.preprocessor.Preprocessor method)

 	Aspell (class in latexbuddy.modules.aspell)

B

 	
 	better_eq() (latexbuddy.problem.Problem method)

 	
 	BibtexDuplicates (class in latexbuddy.modules.bib_checkers)

C

 	
 	check_tex() (latexbuddy.modules.languagetool.LanguageTool method)

 	check_whitelist() (latexbuddy.buddy.LatexBuddy static method)

 	classproperty (class in latexbuddy.tools)

 	ConfigLoader (class in latexbuddy.config_loader)

 	ConfigOptionError

 	ConfigOptionNotFoundError

 	ConfigOptionVerificationError

 	create_empty_line_interval_list() (in module latexbuddy.output)

 	custom_match() (latexbuddy.preprocessor.LineProblemFilter method)

 	(latexbuddy.preprocessor.ModuleProblemFilter method)

 	(latexbuddy.preprocessor.ProblemFilter method)

 	(latexbuddy.preprocessor.SeverityProblemFilter method)

 	(latexbuddy.preprocessor.WhitelistKeyProblemFilter method)

 	
 	custom_parameters_equal() (latexbuddy.preprocessor.LineProblemFilter method)

 	(latexbuddy.preprocessor.ModuleProblemFilter method)

 	(latexbuddy.preprocessor.ProblemFilter method)

 	(latexbuddy.preprocessor.SeverityProblemFilter method)

 	(latexbuddy.preprocessor.WhitelistKeyProblemFilter method)

D

 	
 	default() (latexbuddy.problem.ProblemJSONEncoder method)

 	
 	Diction (class in latexbuddy.modules.diction)

E

 	
 	end() (latexbuddy.preprocessor.ProblemFilter method)

 	ExecutableNotFoundError

 	execute() (in module latexbuddy.tools)

 	execute_background() (in module latexbuddy.tools)

 	
 	execute_commandline_request() (latexbuddy.modules.languagetool.LanguageTool method)

 	execute_module() (latexbuddy.buddy.LatexBuddy static method)

 	execute_no_errors() (in module latexbuddy.tools)

 	execute_no_exceptions() (in module latexbuddy.tools)

F

 	
 	fill_whitelist_from_wordlist() (in module latexbuddy.whitelist)

 	find_disabled_rules() (latexbuddy.modules.languagetool.LanguageTool method)

 	find_executable() (in module latexbuddy.tools)

 	find_free_port() (latexbuddy.modules.languagetool.LanguageToolLocalServer static method)

 	find_languages() (latexbuddy.modules.aspell.Aspell static method)

 	find_languagetool_command() (latexbuddy.modules.languagetool.LanguageTool method)

 	find_languagetool_command_prefix() (latexbuddy.modules.languagetool.LanguageTool method)

 	
 	find_py_files() (latexbuddy.module_loader.ModuleLoader method)

 	find_supported_languages() (latexbuddy.modules.languagetool.LanguageTool method)

 	FlaskConfigLoader (class in latexbuddy.flask_app)

 	format_errors() (latexbuddy.modules.aspell.Aspell method)

 	(latexbuddy.modules.diction.Diction method)

 	(latexbuddy.modules.languagetool.LanguageTool static method)

 	format_problems() (latexbuddy.modules.logfilter.LogFilter method)

G

 	
 	generate_wrapper_html_tags() (in module latexbuddy.output)

 	get_all_paths_in_document() (in module latexbuddy.tools)

 	get_bibfile() (in module latexbuddy.modules.bib_checkers)

 	get_command_string() (in module latexbuddy.tools)

 	
 	get_config_option() (latexbuddy.config_loader.ConfigLoader method)

 	get_config_option_or_default() (latexbuddy.config_loader.ConfigLoader method)

 	get_line_offsets() (in module latexbuddy.tools)

 	get_position_in_tex() (latexbuddy.texfile.TexFile method)

 	get_server_run_command() (latexbuddy.modules.languagetool.LanguageToolLocalServer method)

H

 	
 	highlight() (in module latexbuddy.output)

I

 	
 	import_py_files() (latexbuddy.module_loader.ModuleLoader method)

 	init() (latexbuddy.buddy.LatexBuddy static method)

 	intersects() (latexbuddy.output.Interval method)

 	
 	Interval (class in latexbuddy.output)

 	is_binary() (in module latexbuddy.tools)

 	is_port_in_use() (latexbuddy.modules.languagetool.LanguageToolLocalServer static method)

K

 	
 	kill_background_process() (in module latexbuddy.tools)

L

 	
 	LanguageNotSupportedError

 	LanguageTool (class in latexbuddy.modules.languagetool)

 	LanguageToolLocalServer (class in latexbuddy.modules.languagetool)

 	LatexBuddy (class in latexbuddy.buddy)

 	
 latexbuddy.buddy

 	module

 	
 latexbuddy.config_loader

 	module

 	
 latexbuddy.exceptions

 	module

 	
 latexbuddy.flask_app

 	module

 	
 latexbuddy.messages

 	module

 	
 latexbuddy.module_loader

 	module

 	
 latexbuddy.modules.aspell

 	module

 	
 latexbuddy.modules.bib_checkers

 	module

 	
 latexbuddy.modules.chktex

 	module

 	
 latexbuddy.modules.diction

 	module

 	
 latexbuddy.modules.languagetool

 	module

 	
 latexbuddy.modules.logfilter

 	module

 	
 	
 latexbuddy.modules.own_checkers

 	module

 	
 latexbuddy.modules.proselint_checker

 	module

 	
 latexbuddy.modules.yalafi_checker

 	module

 	
 latexbuddy.output

 	module

 	
 latexbuddy.preprocessor

 	module

 	
 latexbuddy.problem

 	module

 	
 latexbuddy.texfile

 	module

 	
 latexbuddy.tools

 	module

 	
 latexbuddy.whitelist

 	module

 	LineProblemFilter (class in latexbuddy.preprocessor)

 	load_configurations() (latexbuddy.config_loader.ConfigLoader method)

 	load_modules() (latexbuddy.module_loader.ModuleLoader method)

 	load_selected_modules() (latexbuddy.module_loader.ModuleLoader method)

 	(latexbuddy.module_loader.ModuleProvider method)

 	LogFilter (class in latexbuddy.modules.logfilter)

 	lt_languages_get_request() (latexbuddy.modules.languagetool.LanguageTool method)

 	lt_post_request() (latexbuddy.modules.languagetool.LanguageTool method)

M

 	
 	mark_intervals_in_tex() (in module latexbuddy.output)

 	mark_intervals_in_tex_line() (in module latexbuddy.output)

 	match() (latexbuddy.preprocessor.ProblemFilter method)

 	match_lines() (in module latexbuddy.tools)

 	matches_language_regex() (latexbuddy.modules.languagetool.LanguageTool method)

 	matches_preprocessor_filter() (latexbuddy.preprocessor.Preprocessor method)

 	Mode (class in latexbuddy.modules.languagetool)

 	
 module

 	latexbuddy.buddy

 	latexbuddy.config_loader

 	latexbuddy.exceptions

 	latexbuddy.flask_app

 	latexbuddy.messages

 	latexbuddy.module_loader

 	latexbuddy.modules.aspell

 	latexbuddy.modules.bib_checkers

 	latexbuddy.modules.chktex

 	latexbuddy.modules.diction

 	latexbuddy.modules.languagetool

 	latexbuddy.modules.logfilter

 	latexbuddy.modules.own_checkers

 	latexbuddy.modules.proselint_checker

 	latexbuddy.modules.yalafi_checker

 	latexbuddy.output

 	latexbuddy.preprocessor

 	latexbuddy.problem

 	latexbuddy.texfile

 	latexbuddy.tools

 	latexbuddy.whitelist

 	
 	ModuleLoader (class in latexbuddy.module_loader)

 	ModuleProblemFilter (class in latexbuddy.preprocessor)

 	ModuleProvider (class in latexbuddy.module_loader)

N

 	
 	NewerPublications (class in latexbuddy.modules.bib_checkers)

O

 	
 	output_file() (latexbuddy.buddy.LatexBuddy static method)

 	
 	output_html() (latexbuddy.buddy.LatexBuddy static method)

 	output_json() (latexbuddy.buddy.LatexBuddy static method)

P

 	
 	parse_bibfile() (in module latexbuddy.modules.bib_checkers)

 	parse_error_replacements() (latexbuddy.modules.languagetool.LanguageTool static method)

 	perform_intersection() (latexbuddy.output.Interval method)

 	Preprocessor (class in latexbuddy.preprocessor)

 	
 	Problem (class in latexbuddy.problem)

 	problem_key() (in module latexbuddy.output)

 	ProblemFilter (class in latexbuddy.preprocessor)

 	ProblemJSONEncoder (class in latexbuddy.problem)

 	ProblemSeverity (class in latexbuddy.problem)

R

 	
 	regex_parse_preprocessor_comments() (latexbuddy.preprocessor.Preprocessor method)

 	render_general_html() (in module latexbuddy.output)

 	resolve_interval_intersections() (in module latexbuddy.output)

 	run_checks() (latexbuddy.modules.aspell.Aspell method)

 	(latexbuddy.modules.bib_checkers.BibtexDuplicates method)

 	(latexbuddy.modules.bib_checkers.NewerPublications method)

 	(latexbuddy.modules.diction.Diction method)

 	(latexbuddy.modules.languagetool.LanguageTool method)

 	(latexbuddy.modules.logfilter.LogFilter method)

 	
 	run_tools() (latexbuddy.buddy.LatexBuddy static method)

S

 	
 	set_language() (in module latexbuddy.problem)

 	SeverityProblemFilter (class in latexbuddy.preprocessor)

 	
 	start_local_server() (latexbuddy.modules.languagetool.LanguageToolLocalServer method)

 	stop_local_server() (latexbuddy.modules.languagetool.LanguageToolLocalServer method)

T

 	
 	TexFile (class in latexbuddy.texfile)

W

 	
 	wait_till_server_up() (latexbuddy.modules.languagetool.LanguageToolLocalServer method)

 	
 	WhitelistKeyProblemFilter (class in latexbuddy.preprocessor)

_static/logotype-light@2x.png
Y |5TEXBuddy

_static/minus.png

_static/file.png

_static/logotype-dark@2x.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 LaTeXBuddy

 		
 Install

 		
 Install from GitLab Package Registry

 		
 Other versions

 		
 Build from source

 		
 With Docker

 		
 ...develop my own module?

 		
 Create a Python file for your module

 		
 Working with TexFile

 		
 Working with Problem

 		
 position: Tuple[int, int] (optional)

 		
 text: str (required)

 		
 checker: Union[Type[NamedModule], NamedModule] (required)

 		
 file: pathlib.Path (required)

 		
 p_type: Optional[str]

 		
 severity: ProblemSeverity = ProblemSeverity.WARNING

 		
 category: Optional[str]

 		
 description: Optional[str]

 		
 context: Optional[Tuple[str, str]]

 		
 suggestions: List[str]

 		
 key: Optional[str]

 		
 Further Information

 		
 ...use the API?

 		
 Using the ConfigLoader

 		
 Adding config options

 		
 Getting config options

 		
 Using the included utilities

 		
 execute(*cmd: str, encoding: str) -> str

 		
 execute_background(*cmd: str) -> subprocess.Popen

 		
 kill_background_process(process: subprocess.Popen) -> None

 		
 execute_no_errors(*cmd: str, encoding: str = “ISO8859-1”) -> str

 		
 find_executable(name: str, to_install: Optional[str] = None, logger: Optional[Logger] = None, log_errors: bool = True) -> str

 		
 absolute_to_linecol(text: str, position: int) -> Tuple[int, int, List[int]]

 		
 get_line_offsets(text: str) -> List[int]

 		
 is_binary(file_bytes: bytes) -> bool

 		
 execute_no_exceptions(function_call: Callable[[], None], error_message: str, traceback_log_level: Optional[str] = None) -> None

 		
 Command-line interface

 		
 Main executable

 		
 Positional Arguments

 		
 Named Arguments

 		
 Whitelist operations

 		
 Named Arguments

 		
 Sub-commands

 		
 API Reference

 		
 Main instance

 		
 LatexBuddy

 		
 Configuration

 		
 ConfigLoader

 		
 TeX file

 		
 TexFile

 		
 Modules

 		
 ModuleLoader

 		
 ModuleProvider

 		
 Problems

 		
 Problem

 		
 ProblemJSONEncoder

 		
 ProblemSeverity

 		
 set_language()

 		
 Output

 		
 Interval

 		
 add_basic_problem_intervals()

 		
 create_empty_line_interval_list()

 		
 generate_wrapper_html_tags()

 		
 highlight()

 		
 mark_intervals_in_tex()

 		
 mark_intervals_in_tex_line()

 		
 problem_key()

 		
 render_general_html()

 		
 resolve_interval_intersections()

 		
 Preprocessing

 		
 LineProblemFilter

 		
 ModuleProblemFilter

 		
 Preprocessor

 		
 ProblemFilter

 		
 SeverityProblemFilter

 		
 WhitelistKeyProblemFilter

 		
 Whitelist

 		
 add_to_whitelist()

 		
 fill_whitelist_from_wordlist()

 		
 Utilities

 		
 Exceptions

 		
 Messages

 		
 Tools

 		
 Built-in modules

 		
 aspell

 		
 Aspell

 		
 BibTeX

 		
 BibtexDuplicates

 		
 NewerPublications

 		
 get_bibfile()

 		
 parse_bibfile()

 		
 ChkTeX

 		
 Diction

 		
 Diction

 		
 LanguageTool

 		
 LanguageTool

 		
 LanguageToolLocalServer

 		
 Mode

 		
 Log filter

 		
 LogFilter

 		
 Own checkers
